41 research outputs found

    Silencing cytokeratin 18 gene inhibits intracellular replication of Trypanosoma cruzi in HeLa cells but not binding and invasion of trypanosomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As an obligatory intracellular parasite, <it>Trypanosoma cruzi</it>, the etiological agent of Chagas' disease, must invade and multiply within mammalian cells. Cytokeratin 18 (CK18) is among the host molecules that have been suggested as a mediator of important events during <it>T. cruzi</it>-host cell interaction. Based on that possibility, we addressed whether RNA interference (RNAi)-mediated down regulation of the CK18 gene could interfere with the parasite life cycle <it>in vitro</it>. HeLa cells transiently transfected with CK18-RNAi had negligible levels of CK18 transcripts, and significantly reduced levels of CK18 protein expression as determined by immunoblotting or immunofluorescence.</p> <p>Results</p> <p>CK18 negative or positive HeLa cells were invaded equally as well by trypomastigotes of different <it>T. cruzi </it>strains. Also, in CK18 negative or positive cells, parasites recruited host cells lysosomes and escaped from the parasitophorous vacuole equally as well. After that, the growth of amastigotes of the Y or CL-Brener strains, was drastically arrested in CK18 RNAi-treated cells. After 48 hours, the number of amastigotes was several times lower in CK18 RNAi-treated cells when compared to control cells. Simultaneous staining of parasites and CK18 showed that in HeLa cells infected with the Y strain both co-localize. Although the amastigote surface protein-2 contains the domain VTVXNVFLYNR previously described to bind to CK18, in several attempts, we failed to detect binding of a recombinant protein to CK-18.</p> <p>Conclusion</p> <p>The study demonstrates that silencing CK18 by transient RNAi, inhibits intracellular multiplication of the Y and CL strain of <it>T. cruzi </it>in HeLa cells, but not trypanosome binding and invasion.</p

    Secreted Human Amyloid Precursor Protein Binds Semaphorin 3a and Prevents Semaphorin-Induced Growth Cone Collapse

    Get PDF
    The amyloid precursor protein (APP) is well known for giving rise to the amyloid-β peptide and for its role in Alzheimer's disease. Much less is known, however, on the physiological roles of APP in the development and plasticity of the central nervous system. We have used phage display of a peptide library to identify high-affinity ligands of purified recombinant human sAPPα695 (the soluble, secreted ectodomain from the main neuronal APP isoform). Two peptides thus selected exhibited significant homologies with the conserved extracellular domain of several members of the semaphorin (Sema) family of axon guidance proteins. We show that sAPPα695 binds both purified recombinant Sema3A and Sema3A secreted by transfected HEK293 cells. Interestingly, sAPPα695 inhibited the collapse of embryonic chicken (Gallus gallus domesticus) dorsal root ganglia growth cones promoted by Sema3A (Kd≤8·10−9 M). Two Sema3A-derived peptides homologous to the peptides isolated by phage display blocked sAPPα binding and its inhibitory action on Sema3A function. These two peptides are comprised within a domain previously shown to be involved in binding of Sema3A to its cellular receptor, suggesting a competitive mechanism by which sAPPα modulates the biological action of semaphorins

    Dynasore, a Dynamin Inhibitor, Inhibits Trypanosoma cruzi Entry into Peritoneal Macrophages

    Get PDF
    BACKGROUND: Trypanosoma cruzi is an intracellular parasite that, like some other intracellular pathogens, targets specific proteins of the host cell vesicular transport machinery, leading to a modulation of host cell processes that results in the generation of unique phagosomes. In mammalian cells, several molecules have been identified that selectively regulate the formation of endocytic transport vesicles and the fusion of such vesicles with appropriate acceptor membranes. Among these, the GTPase dynamin plays an important role in clathrin-mediated endocytosis, and it was recently found that dynamin can participate in a phagocytic process. METHODOLOGY/PRINCIPAL FINDINGS: We used a compound called dynasore that has the ability to block the GTPase activity of dynamin. Dynasore acts as a potent inhibitor of endocytic pathways by blocking coated vesicle formation within seconds of its addition. Here, we investigated whether dynamin is involved in the entry process of T. cruzi in phagocytic and non-phagocytic cells by using dynasore. In this aim, peritoneal macrophages and LLC-MK2 cells were treated with increasing concentrations of dynasore before interaction with trypomastigotes, amastigotes or epimastigotes. We observed that, in both cell lines, the parasite internalization was drastically diminished (by greater than 90% in LLC-MK2 cells and 70% in peritoneal macrophages) when we used 100 microM dynasore. The T. cruzi adhesion index, however, was unaffected in either cell line. Analyzing these interactions by scanning electron microscopy and comparing peritoneal macrophages to LLC-MK2 cells revealed differences in the stage at which cell entry was blocked. In LLC-MK2 cells, this blockade is observed earlier than it is in peritoneal macrophages. In LLC-MK2 cells, the parasites were only associated with cellular microvilli, whereas in peritoneal macrophages, trypomastigotes were not completely engulfed by a host cell plasma membrane. CONCLUSIONS/SIGNIFICANCE: Taken together our results demonstrate that dynamin is an essential molecule necessary for cell invasion and specifically parasitophorous vacuole formation by host cells during interaction with Trypanosoma cruzi

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets

    Hemodynamic parameters to guide fluid therapy

    Get PDF
    The clinical determination of the intravascular volume can be extremely difficult in critically ill and injured patients as well as those undergoing major surgery. This is problematic because fluid loading is considered the first step in the resuscitation of hemodynamically unstable patients. Yet, multiple studies have demonstrated that only approximately 50% of hemodynamically unstable patients in the intensive care unit and operating room respond to a fluid challenge. Whereas under-resuscitation results in inadequate organ perfusion, accumulating data suggest that over-resuscitation increases the morbidity and mortality of critically ill patients. Cardiac filling pressures, including the central venous pressure and pulmonary artery occlusion pressure, have been traditionally used to guide fluid management. However, studies performed during the past 30 years have demonstrated that cardiac filling pressures are unable to predict fluid responsiveness. During the past decade, a number of dynamic tests of volume responsiveness have been reported. These tests dynamically monitor the change in stroke volume after a maneuver that increases or decreases venous return (preload) and challenges the patients' Frank-Starling curve. These dynamic tests use the change in stroke volume during mechanical ventilation or after a passive leg raising maneuver to assess fluid responsiveness. The stroke volume is measured continuously and in real-time by minimally invasive or noninvasive technologies, including Doppler methods, pulse contour analysis, and bioreactance

    Dual Effect of Beta-Amyloid on α7 and α4β2 Nicotinic Receptors Controlling the Release of Glutamate, Aspartate and GABA in Rat Hippocampus

    Get PDF
    BACKGROUND: We previously showed that beta-amyloid (Aβ), a peptide considered as relevant to Alzheimer's Disease, is able to act as a neuromodulator affecting neurotransmitter release in absence of evident sign of neurotoxicity in two different rat brain areas. In this paper we focused on the hippocampus, a brain area which is sensitive to Alzheimer's Disease pathology, evaluating the effect of Aβ (at different concentrations) on the neurotransmitter release stimulated by the activation of pre-synaptic cholinergic nicotinic receptors (nAChRs, α4β2 and α7 subtypes). Particularly, we focused on some neurotransmitters that are usually involved in learning and memory: glutamate, aspartate and GABA. METHODOLOGY/FINDINGS: WE USED A DUAL APPROACH: in vivo experiments (microdialysis technique on freely moving rats) in parallel to in vitro experiments (isolated nerve endings derived from rat hippocampus). Both in vivo and in vitro the administration of nicotine stimulated an overflow of aspartate, glutamate and GABA. This effect was greatly inhibited by the highest concentrations of Aβ considered (10 µM in vivo and 100 nM in vitro). In vivo administration of 100 nM Aβ (the lowest concentration considered) potentiated the GABA overflow evoked by nicotine. All these effects were specific for Aβ and for nicotinic secretory stimuli. The in vitro administration of either choline or 5-Iodo-A-85380 dihydrochloride (α7 and α4β2 nAChRs selective agonists, respectively) elicited the hippocampal release of aspartate, glutamate, and GABA. High Aβ concentrations (100 nM) inhibited the overflow of all three neurotransmitters evoked by both choline and 5-Iodo-A-85380 dihydrochloride. On the contrary, low Aβ concentrations (1 nM and 100 pM) selectively acted on α7 subtypes potentiating the choline-induced release of both aspartate and glutamate, but not the one of GABA. CONCLUSIONS/SIGNIFICANCE: The results reinforce the concept that Aβ has relevant neuromodulatory effects, which may span from facilitation to inhibition of stimulated release depending upon the concentration used

    Amyloid-β Triggers the Release of Neuronal Hexokinase 1 from Mitochondria

    Get PDF
    Brain accumulation of the amyloid-β peptide (Aβ) and oxidative stress underlie neuronal dysfunction and memory loss in Alzheimer's disease (AD). Hexokinase (HK), a key glycolytic enzyme, plays important pro-survival roles, reducing mitochondrial reactive oxygen species (ROS) generation and preventing apoptosis in neurons and other cell types. Brain isozyme HKI is mainly associated with mitochondria and HK release from mitochondria causes a significant decrease in enzyme activity and triggers oxidative damage. We here investigated the relationship between Aβ-induced oxidative stress and HK activity. We found that Aβ triggered HKI detachment from mitochondria decreasing HKI activity in cortical neurons. Aβ oligomers further impair energy metabolism by decreasing neuronal ATP levels. Aβ-induced HKI cellular redistribution was accompanied by excessive ROS generation and neuronal death. 2-deoxyglucose blocked Aβ-induced oxidative stress and neuronal death. Results suggest that Aβ-induced cellular redistribution and inactivation of neuronal HKI play important roles in oxidative stress and neurodegeneration in AD
    corecore